Title(KR)
포커게임에서 게이머와 아바타 사이의 감정연결을 실현하기 위한 딥 러닝 사용 방법에 관한 연구
Title(ENG)
Study on Using Deep Learning Method to Realize The Emotion Linkage between The Gamer and His Avatar in Poker Game
Keywords(KR)
Psychological game, Emotion recognition, CNN, SVM, Emotion linkage technology
Keywords(ENG)
Psychological game, Emotion recognition, CNN, SVM, Emotion linkage technology
Author
갈지용, 이혜문, 이원형
Abstract(KR)
다른 장르의 게임에 비해 포커는 게이머의 심리적 요소가 많은 영향을 끼친다. 본 논문에서는CNN과 SVM을 기반으로 온라인 포커 게임에 게이머와 아바타 간의 감성연결을 실현하기 위한새로운 감성 인식방법을 제안한다. CNN모델을 이용하여 원래 얼굴 이미지의 특징을 추출하고, 다중 클래스 SVM분류기를 사용하여 목표 이미지를 인식하고 분류한다. FER-2013데이터베이스에서 이 방법은 감성인식률 68.79 %를 달성하였다. 기존의 다른 감성 인식 모델과 비교하면, 이 모델은 뚜렷한 장점을 보일 수 있다. 본 게임은 Socket 통신방식을 통해감성인식결과를 Seven Poker로 전송하여 아바타가 게이머와 같은 감성을 표현하도록 설계하였다. 온라인 포커 게임에 감성연결 기술을 이용하면 게임과 인간의 상호작용이 향상될 뿐 아니라 게이머가 상대방의 심리적인 활동을 효과적으로 분석할 수 있다. 감성연결 기술은 게임에서 게이머들에게 새로운 게임 경험을 제공할 수 있는 기술이라고 생각된다.
Abstract(ENG)
Compared to other types of games, poker game is a psychological game based on gamer's psychological activity. This paper proposes a method based on convolutional neural network (CNN) and support vector machine (SVM) to realize the emotion recognition to link the gamer and his avatar in online poker game. The CNN model is used to extract feature of the original face images, and the multi-class SVM classifier is used to classify the emotions. On the FER-2013 database, the proposed method achieves 68.79% emotion recognition rate, and has obvious advantages compared with most other emotion recognition methods. Next, through the socket communication, the result of the emotion recognition is transferred to the designed seven poker game to realize the emotion linkage between the gamer and his avatar. More importantly, the emotion linkage technology not only helps the gamer to analyze the opponent’s psychological state, but also enhances the interaction of the game. It is undoubtedly a new breakthrough in game play that will give gamers a whole new gaming experience.
Page 47-55